Object Oriented Software
Frameworks

Jim Kowalkowski




Framework Terms

Module: An object (in C++) that “plugs”
into a processing stream and performs
a specific task, without knowledge of
how other modules work.

Framework: A object that creates,
configures, and invokes modules in a
sequence defined by the user at run
time, without recompilation




What Does a Framework Do?

o Encapsulates a task within a module,
such as a single reconstruction
algorithm

e Enforces uniform configuration

e Centralizes common tasks
— Reading, generating, and writing events
— Managing database information

» Allows easy substitution of modules




Where Does it Apply?

* The event filter farm
e Simulation

» Offline reconstruction
e Trigger simulator
 First order analysis




Benefits of a Framework

» Developers do not need to know as
many details about routine things

* Reduction of cut and paste coding and
repetitive task coding
— Reduced maintenance
— Ability to upgrade in the future

e Compiler helps spot problems




Benefits Continued...

» Reduced development time

e Increased productivity
— Configuration it similar
— Running canned algorithm requires no
code development
» Global and well defined handling of
errors, timing, database, and memory




A Good Framework Will...

Allow the development to focus on only the
problem they are trying to solve

Put low requirements on modules
Make it easy to configure algorithms and jobs

Enforce uniformity amongst applications

Promote good use of C++
— Exception handling
— “construction is resource acquisition” idiom




A Good Framework Provides

» Classes that are specific to a single
task

e Low coupling to services

* Ability to change dispatcher without
affecting user code

e Low requirements to participate
» Flexibility and extendibility




Benefits of Consistency

e Applications work together

o Easier for developers to run all the
various applications

» Mixing modules and applications works
without using binding code or scripts




Inconsistency Consequences

Producing disparate applications reduces
productivity

— Code for services repeated

Interchange formats required

— Time consuming to run
— Time consuming to maintain

Less overall code understanding
Localized experts
Adds rigidity to the system




Consequences of Limited Use

e Level 3 at D@

— Code needs to run in two frameworks
— Two infrastructures to maintain

e GEANT4 independent of framework
— Own concept of event, data objects
— Translations required or carrying GEANT
— Configuration dissimilarities

e Level 2 muon trigger simulator
— Differing philosophies
— Large amount of binding code




What Is Needed Early On?

» Clear concept of what a module is

» Configuration and algorithm parameter
management

» Protocol for data exchange (EDM)

» Understanding of how conditions data
will be treated and accessed
(calibration, geometry, alignment, etc.)

e Requirements on sequencing




Early Goals for Design

e Defining module interfaces
e Error Logging and reporting

» Recovery and restart capabilities
— Progress tracking

e Simple scheduling or sequencing
e Interactivity requirements

» Defining interfaces to database
information




A Few Requirements

e Dynamic loading of modules (explicit and
implicit)

» Sequences and subsequences which events
flow through

Intelligent propagation and handling of
exceptions, messages, and program aborts

Timing, memory leak checking
Modules will be created with a sane state

Module instances creates at runtime, as
needed




More requirements

» No interactions between modules
except through the event data

e Pick and choose active modules at run
time

o Support multiple instances of modules

» Developer picks the functions of the
module (reconstruction, filtering,

analysis, display, run boundary
processing)




Module Coding Guidelines

* No caching event data between events

e No global variables

e Do not use or contact other modules
directly

DO not cast away cornst-ness
No circular dependencies
No super modules that do everything




Problem Areas

e Event Display integration
e Scripting or interactive prompt
 Integration of simulation engine

Each competes for control of the main
“event loop” or thread of control, each
can put requirements on modules and

data




Addressing these Areas

» Decide on the necessary requirements

o Consider multi-threading

— Complex to produce infrastructure

— Efficient solution to multiple event loops
o Consider multi-process

— Interprocess communication is less efficient

— Solves versioning and upgrade problems
with libraries such as the event display




Some Observations with C++

Configuring and running an executable that is
already compiled is the easiest and safest

thing to do

Linking together a set of libraries to build a

new executa
time and bui

Compiling a

ole is more difficult, requires
d system knowledge

ibrary and building an

executable is the most error prone and time
consuming process




Example Header (simplified)

Class TrackReco {

Public:

TrackReco(const ConfigurationData& parms, Registry&);
~TrackReco();

Directive reconstructEvent(Event& e);
Directive analyzeEvent(const Event& e);
Directive runStart(const RunInfo& I);

Void Reconfigure(const ConfigurationData&);
Private: ...

}




Example Implementation

TrackReco::TrackReco(const ConfigurationData& d,
Registery& r) {
r.subscribe(“event reco”,reconstructEvent);
r.subscribe(“event analysis”,analyzeEvent);
r.subscribe(“run init”,runStart);

double thresold = d.getDouble(“thresold”);

RegisterModule(TrackReco,”V1.0")




Notes:

 Division of labor is important — testing out
algorithms or supporting multiple types for
the same purpose is important

— Want to reuse certain information in all the
algorithms without reproducing or copying the
code (hits or clusters in silicon or drift chambers).

— Want to do the same analysis after the algorithms
are run

e (arguments against super modules)




